

# 6. ESPECIFICACIONES TÉCNICAS

Incertidumbre es indicada como: ±[%lectura + (núm. cifras \* resolución)] a 23°C, <70%HR. Consulte la Tabla 1 para la correspondencia entre modelos y características disponibles

Tensión CC y CA TRMS

| Rango          | Resolución | Incertidumbre<br>DC  | Incertidumbre<br>(30 ÷ 70Hz) | Incertidumbre<br>(70 ÷ 400Hz) | Impedancia<br>de entrada |
|----------------|------------|----------------------|------------------------------|-------------------------------|--------------------------|
| 1.0 ÷ 999.9mV  | 0.1mV      |                      |                              |                               |                          |
| 1.000 ÷ 9.999V | 0.001V     | 1/0 E0/log (2dgt)    | 1/1 00/log ( 2dat)           | 1/2 00/log12dat)              | 1ΜΩ                      |
| 10.00 ÷ 99.99V | 0.01V      | $\pm$ (0.5%lec+2dgt) | $\pm$ (1.0%lec+2dgt)         | $\pm$ (2.0%lec+2dgt)          | 11/17 5                  |
| 100.0 ÷ 605.0V | 0.1V       |                      |                              |                               |                          |

MAX, MIN, AVG, PEAK, Incertidumbre: ±(5.0% rdg + 10 dgt); tiempo de respuesta: 500ms (MAX, MIN, AVG),1ms (PEAK) Máximo factor de cresta: 3.0 para V<1.0V; 1.5 para V≥1.0V

Corriente CC y CA TRMS (a traves de toroidal externo)

| Rango          | Resolución | Incertidumbre<br>DC | Incertidum.<br>(30÷70Hz) | Incertidum.<br>(70÷400Hz) | Impedancia<br>de entrada | Protección<br>contra<br>sobrecargas |
|----------------|------------|---------------------|--------------------------|---------------------------|--------------------------|-------------------------------------|
| 1.0 ÷ 999.9mV  | 0.1mV      | ±(0.5%lec+          | ±(1.0%lec + 2            | ±(2.0%lec + 2             | 1ΜΩ                      | 605V AC                             |
| 1.000 ÷ 1.200V | 0.001V     | 2 dgt)              | dgt)                     | dgt)                      | 1 1015 2                 | max RMS                             |

Nota: la Incertidumbre mencionada no tiene encuenta la Incertidumbre del transductor, vealo en el manual de instrucciones MAX, MIN, AVG, PEAK, Incertidumbre: ±(5.0% rdg + 10 dgt); tiempo de respuesta: 500ms (MAX, MIN, AVG),1ms (PEAK) Mínima corriente de entrada detectable 1mV x constante de transducción de la pinza Máximo factor de cresta: 3.0 para V<1.0V; 1.5 para V≥1.0V

Frecuencia a traves de puntas de prueba

| Rango          | Resolución | Incertidumbre          | Impedancia de entrada |
|----------------|------------|------------------------|-----------------------|
| 30.0 ÷ 199.9Hz | 0.1Hz      | 1/0 F0/log 1 2dat)     | 4140                  |
| 200 ÷ 400Hz    | 1Hz        | $\pm$ (0.5%lec + 2dgt) | 1ΜΩ                   |

Valor de tensión de entrada: 1mV ÷ 605.0V

### Frecuencia a traves de toroidal

| Rango          | Resolución | Incertidumbre          | Protección contra sobrecargas |
|----------------|------------|------------------------|-------------------------------|
| 30.0 ÷ 199.9Hz | 0.1Hz      | 1 (0 E0/log 1 2dgt)    | 605V AC max RMS               |
| 200 ÷ 400Hz    | 1Hz        | $\pm$ (0.5%lec + 2dgt) | 005V AC IIIAX RIVIS           |

Valor de tensión de entrada: 1mV ÷ 1V

Resistencia y Test continuidad

| Rango                        | Resolución   | Incertidumbre    | Buzzer | Protección contra sobrecargas     |
|------------------------------|--------------|------------------|--------|-----------------------------------|
| $0.00 \div 39.99\Omega$      | $0.01\Omega$ |                  |        |                                   |
| $40.0 \div 399.9\Omega$      | 0.1Ω         | 1/10/log   Edgt) | R<40Ω  | 605V AC max RMS para 1 minuto     |
| 400 ÷ 3999Ω                  | 1Ω           | ±(1%lec + 5dgt)  | R<4012 | 1005 V AC Max Rivis para i minuto |
| $4.00 \div 39.99$ k $\Omega$ | 10Ω          |                  |        |                                   |

Prueba del sentido cíclico de las fases y de la concordancia de fase

| Tipo de medida       | Tipo de medida Tensión de ejercicio (V) |                              |
|----------------------|-----------------------------------------|------------------------------|
| 1 terminal (1)(/)    | 00 - 245 (Face Tierra)                  | hasta 315 V (Fase – Tierra)  |
| 1 terminal (1W)      | 90 ÷ 315 (Fase - Tierra)                | hasta 550V (Fase – Fase)     |
| 2 torminal as (2)A/) | 440 245 (Face Novine)                   | hasta 315 V (Fase – Neutro)  |
| 2 terminales (2W)    | 110 ÷ 315 (Fase - Neutro)               | hasta 550V (Fase – Fase) (*) |

Máximo factor de cresta 1.5 ; Campo de frecuencia 45  $\div$  65 Hz

### $\Omega$ 0.2A: Prueba de continuidad

| Rango                   | Resolución   | Incertidumbre          | Protección contra sobrecargas |
|-------------------------|--------------|------------------------|-------------------------------|
| $0.00 \div 19.99\Omega$ | $0.01\Omega$ | 1/E 00/ log 1 2dat)    | 605V may DMS                  |
| $20.0 \div 99.9\Omega$  | 0.1          | $\pm$ (5.0%lec + 3dgt) | 605V max RMS                  |

Corriente de Prueba: >200mA CC hasta  $5\Omega$  (resistencia de los cables de medida incluida)

Resolución medida corriente: 1mA Tensión en vacio: 4 < V<sub>0</sub> < 24V

<sup>(\*)</sup> La medida a 2 hilos se efectúa entre Fase – Fase en instalaciones sin neutro, y además con una fase a Tierra, siempre con tensión Fase-Fase hasta 550V



MΩ: Resistencia de aislamiento 250, 500V CC

| Rango                     | Resolución              | Incertidumbre           | Protección contra sobrecargas |
|---------------------------|-------------------------|-------------------------|-------------------------------|
| $0.00 \div 19.99 M\Omega$ | $0.01 \mathrm{M}\Omega$ | $\pm$ (5.0%lec + 2dgt)  |                               |
| $20.0 \div 199.9 M\Omega$ | $0.1 \mathrm{M}\Omega$  | $\pm$ (5.0%lec + 2dgt)  | 605V max RMS                  |
| 200 ÷ 999MΩ(*)            | 1ΜΩ                     | $\pm$ (10.0%lec + 2dgt) |                               |

(\*) Para tensiòn de prueba 500VCC. Para tensiòn de prueva 250V el rango es:  $200 \div 499M\Omega$ 

Selección automática del campo de medida para resistencia

Tensión en vacio: <1.3 x V<sub>0</sub>

Incertidumbre tensión de prueba nominal: -0% +10%

Corriente de cortocircuito: <3.0mA

Corriente de medida nominal: 1mA @ 1K $\Omega$  x V (1mA @ 500K $\Omega$ )

#### RCD: Tiempo de intervención de los diferenciales AC y A

|   | Rango     | Resolución | Incertidumbre          | Protección contra sobrecargas |
|---|-----------|------------|------------------------|-------------------------------|
| Ī | 2 ÷ 300ms | 1ms        | $\pm$ (2.0%lec + 2dgt) | 605V max RMS                  |

Tipo de diferencial: AC ( $^{\circ}$ ), A ( $^{\circ}$ ), General (G) Tensión fase – tierra / fase - neutro: 100 ÷ 265V

Corrientes de prueba: 30mA, 30mA x 5, 100mA, 300mA (Tipo AC), 30mA (Tipo A)

Frecuencia: 50Hz  $\pm$  0.5Hz / 60Hz  $\pm$  0.5Hz

# RCD: Corriente de intervención de los diferenciales

| Tipo RCD        | IΔN  | Rango l∆N [mA] | Resolución | Incertidumbre             |
|-----------------|------|----------------|------------|---------------------------|
| AC, A (General) | 30mA | 6.0 ÷ 33.0     | 0.5mA      | - 0%, +10%I <sub>∆N</sub> |

Tensión fase – tierra / fase - neutro:  $100 \div 265V$  Frecuencia:  $50Hz \pm 0.5Hz$  /  $60Hz \pm 0.5Hz$ 

Ra \(\preceq\): Medida de la resistencia global de tierra

| Corriente de prueba | Rango                  | Resolución  | Incertidumbre   | Protección contra sobrecargas |  |
|---------------------|------------------------|-------------|-----------------|-------------------------------|--|
| 15mA                | $1 \div 1999\Omega$    | 1Ω          | ±(5%lec + 2dgt) | 605V may DMS                  |  |
| 100mA               | $0.1 \div 199.9\Omega$ | $0.1\Omega$ | ±(5%lec + 3dgt) | H 605V MAX RIVIS              |  |

Tensión fase – tierra: 100  $\div$  265V; Frecuencia: 50Hz  $\pm$  0.5Hz / 60Hz  $\pm$  0.5Hz

Tensión nominal utilizada para el cálculo de la presunta corriente de corto circuito:

127V si 100V  $\leq$  V<sub>medida</sub> < 150V 230V si 150V  $\leq$  V<sub>medida</sub> < 265V

# **ATENCIÓN**



En todas las medidas, el instrumento visualiza el símbolo de atención 🗥 cuando:

- El instrumento está operando en situación crítica, como ejemplo en presencia de sobretensión
- El instrumento no puede garantizar la incertidumbre de las medidas inferiores al 30% de la lectura, en acuerdo con la IEC/EN61557-1

### Mapeado del cableado

Longitud del cable: 1÷100m Número de unidades remotas: max 8 unidades

Error encontrado: OPEN pairs, REVERSED pairs, SHORT pairs, SPLIT pairs, CROSSED pairs, MISWIRING

En acuerdo con la norma: TIA568B



6.1. NORMAS DE REFERENCIA

Seguridad: IEC/EN61010-1, IEC/EN61557-1-2-3-4-6-7

Alslamiento: doble aislamiento

Nivel de polución: 2

Categoría de sobretensión: CAT III 550V (fase – tierra y fase – fase)

Altitud max de uso: 2000m LAN test TIA568B

# 6.2. CARACTERÍSTICAS GENERALES

Características eléctricas

Conversión: ADC 16 bit, TRMS – Verdadero valor eficaz

Frecuencia de muestreo: 64 muestras por periodo Frecuencia refresco display: 2 veces por segundo

Características mecánicas

Dimensiones (L x La x H): 240 x 100 x 45mm

Peso (pilas incluidas): 630g

Alimentación

Tipo pila: 4x1.5V pilas tipo AA LR6 MN1500

Indicación pila descargada: el símbolo "■ aparece en el visualizador

Duración pilas: Multímetro: Aprox. 90 horas

 O:
 > 1000 pruebas

 LAN:
 > 1000 pruebas

 $\Omega$  0.2A: > 1000 pruebas @  $1\Omega$ 

 $M\Omega$ : > 1000 pruebas@ 480k $\Omega$  (500VCC)

RCD: > 1000 pruebas Ra  $\stackrel{\perp}{=}$ : > 1000 pruebas AUTO: > 1000 pruebas

Autoapagado: A los aprox. 10 minutos de no utilización

Visualizador

Características: 4 LCD con lectura máxima 9999 puntos más

signo y punto decimal.

6.3. CONDICIONES AMBIANTALES DE USO

Temperatura de referencia: $23^{\circ} \pm 5^{\circ}$ CTemperatura de uso: $0 \div 40^{\circ}$ CHumedad relativa admitida:<70%HRTemperatura de almacenamiento: $-10 \div 60^{\circ}$ CHumedad de almacenamiento:<70%HR

Este instrumento es conforme a los requisitos de la Directiva Europea sobre baja tensión 2006/95/CE (LVD) y de la directiva EMC 2004/108/CE

### 6.4. ACCESORIOS

Ver lista adjunta