

6. ESPECIFICACIONES TÉCNICAS

Este instrumento es conforme a los requisitos de la Directiva Europea sobre baja tensión 73/23/CEE y de la directiva EMC 89/336/CEE, modificada con la 93/68/CEE

6.1. CARACTERÍSTICAS TÉCNICAS

La precisión está indicada como [% de la lectura ± número de cifras]. Está referida a las condiciones atmosféricas indicadas: temperatura 23°C ± 5°C, humedad relativa < 70%.

Medida de tensión CC y CA TRMS

Rango	Resolución	Precisión DC	Precisión (30 ÷ 70Hz)	Precisión (70 ÷ 400Hz)	Impedancia de entrada
1.0 ÷ 999.9mV	0.1mV				
1.000 ÷ 9.999V	0.001V	±(0.5% rdg +	±(1.0% rdg +	±(2.0% rdg +	1M Ω
10.00 ÷ 99.99V	0.01V	2 dgt)	2 dgt)	2 dgt)	110177
100.0 ÷ 605.0V	0.1V				

MAX, MIN, AVG, PEAK, precisión: ±(5.0% rdg + 10 dgt); tiempo de respuesta: 500ms (MAX, MIN, AVG),1ms (PEAK) Máximo factor de cresta: 3.0 para V<1.0V; 1.5 para V≥1.0V

Medida de corriente CC y CA TRMS (a traves de toroidal externo)

Rango	Resolución	Precisión DC	Precisión (30÷70Hz)	Precisión (70÷400Hz)	Impedancia de entrada	Protección contra sobrecargas
1.0 ÷ 999.9mV	0.1mV	±(0.5% rdg	±(1.0% rdg	±(2.0% rdg	1ΜΩ	605V AC
1.000 ÷ 1.200V	0.001V	+ 2 dgt)	+ 2 dgt)	+ 2 dgt)	1 1/12 2	max RMS

Nota: la precisión mencionada no tiene encuenta la precisión del transductor, vealo en el manual de instrucciones MAX, MIN, AVG, PEAK, precisión: ±(5.0% rdg + 10 dgt); tiempo de respuesta: 500ms (MAX, MIN, AVG),1ms (PEAK) Mínima corriente de entrada detectable 1mV x constante de transducción de la pinza Máximo factor de cresta: 3.0 para V<1.0V; 1.5 para V≥1.0V

Medida de frecuencia a traves de puntas de prueba

Rango	Resolución	Precisión	Impedancia de entrada
30.0 ÷ 199.9Hz	0.1Hz	1/0 50/ rda 1 2 dat)	1140
200 ÷ 400Hz	1Hz	\pm (0.5% rdg + 2 dgt)	1ΜΩ

Valor de tensión de entrada: 1mV ÷ 605.0V

Medida de frecuencia a traves de toroidal

Rango	Resolución	Precisión	Protección contra sobrecargas
30.0 ÷ 199.9Hz	0.1Hz	1/0 E0/ rdg 1 2dgt)	605V/AC may BMS
200 ÷ 400Hz	1Hz	\pm (0.5% rdg + 2dgt)	605V AC max RMS

Valor de tensión de entrada: 1mV ÷ 1V

Medida de resistencia/continuidad

Rango	Resolución	Precisión	Protección contra sobrecargas
$0.00 \div 39.99\Omega$	0.01Ω		
$40.0 \div 399.9\Omega$	0.1Ω	±(19/ rda ± 5 dat)	605V AC max RMS para 1 minuto
$400 \div 3999\Omega$	1Ω	\pm (1% rdg + 5 dgt)	OOSV AC Max Rivis para 1 minuto
$4.00 \div 39.99$ kΩ	10Ω		

El indicador acústico emite un señal para medidas de resistencia inferiores a 40Ω

Prueba del sentido cíclico de las fases y de la concordancia de fase

Tipo de medida	Tensión de ejercicio (V)	Tipo de sistema
1 terminal (1W)	00 : 315 (Face Tierre)	hasta 315 V (Fase – Tierra)
T terrilinal (TVV)	90 ÷ 315 (Fase - Tierra)	hasta 550V (Fase – Fase)
2 terminales (2W)	110 · 215 (Face Noutro)	hasta 315 V (Fase – Neutro)
Z terriiriales (2VV)	110 ÷ 315 (Fase - Neutro)	hasta 550V (Fase – Fase) (1)

Máximo factor de cresta 1.5

Campo de frecuencia 45 ÷ 65 Hz

(1) La medida a 2 hilos se efectúa entre Fase – Fase en instalaciones sin neutro, y además con una fase a Tierra, siempre con tensión Fase-Fase hasta 550V

 Ω 0.2A: Prueba de continuidad (M72, M74, M75)

Rango	Resolución	Precisión	Protección contra sobrecargas
$0.00 \div 19.99\Omega$	0.01Ω	±(5.0% rdg ± 2.dgt)	605V max RMS
$20.0 \div 99.9\Omega$	0.1	\pm (5.0% rdg + 3 dgt)	003V IIIAX KIVIS

Corriente de Prueba: >200mA CC hasta 5Ω (resistencia de los cables de medida incluida)

Resolución medida corriente: 1mA Tensión en vacio: 4 < V₀ < 24V

MΩ: Medida de la resistencia de aislamiento 250, 500V CC (M72, M74, M75)

Rango	Resolución	Precisión	Protección contra sobrecargas
$0.00 \div 19.99 M\Omega$	$0.01 \mathrm{M}\Omega$	\pm (5.0% rdg + 2 dgt)	
20.0 ÷ 199.9MΩ	0.1ΜΩ	\pm (5.0% rdg + 2 dgt)	605V max RMS
200 ÷ 999MΩ(*)	1ΜΩ	\pm (10.0% rdg + 2 dgt)	

(*) Para tensiòn de prueba 500VCC. Para tensiòn de prueva 250V el rango es: $200 \div 499M\Omega$

Selección automática del campo de medida para resistencia

Tensión en vacio: <1.3 x V₀

Precisión tensión de prueba nominal: -0% +10%

Corriente de cortocircuito: <3.0mA

Corriente de medida nominal: 1mA @ 1K Ω x V (1mA @ 500K Ω)

RCD: Prueba de la intervención de los diferenciales CA (M73, M74, M75)

Rango	Resolución	Precisión	Protección contra sobrecargas
2 ÷ 400ms	1ms	\pm (2.0% rdg + 2 dgt)	605V max RMS

Tensión fase – tierra: 110 ÷ 265V

Corrientes de prueba: 30mA, 30mA x 5, 100mA, 300mA

Frecuencia: $50\text{Hz} \pm 0.5\text{Hz}$ / $60\text{Hz} \pm 0.5\text{Hz}$

Ra =: Medida de la resistencia global de tierra (M73, M74, M75)

Corriente de prueba	Rango	Resolución	Precisión	Protección contra sobrecargas	
15mA	$1 \div 1999\Omega$	1 Ω	±(5% rdg + 2 dgt)	605V may DMS	
100mA	$0.1 \div 199.9\Omega$	0.1Ω	±(5% rdg + 3 dgt)	605V max RMS	

Tensión fase – tierra: 110 \div 265V; Frecuencia: 50Hz \pm 0.5Hz / 60Hz \pm 0.5Hz

Tensión nominal utilizada para el cálculo de la presunta corriente de corto circuito: 127V si 100V ≤ V_{medida} < 150V 230V si 150V ≤ V_{medida} < 265V

Mapeado del cableado

Longitud del cable: 1÷100m Número de unidades remotas: max 8 unidades

Error encontrado: OPEN pairs, REVERSED pairs, SHORT pairs, SPLIT pairs, CROSSED pairs, MISWIRING

En acuerdo con la norma: TIA568B

ATENCIÓN

 \triangle

En todas las medidas, el instrumento visualiza el símbolo de atención \triangle cuando:

- el instrumento está operando en situación crítica, como ejemplo en presencia de sobretensión
- el instrumento no puede garantizar la incertidumbre de las medidas inferiores al 30% de la lectura, en acuerdo con la EN61557-1

6.1.1. Características eléctricas

Conversión: ADC 16 bit, TRMS – Verdadero valor eficaz

Frecuencia de muestreo: 64 muestras por periodo Frecuencia refresco display: 2 veces por segundo

6.1.2. Normas de seguridad

El instrumento es conforme a las normas: EN61010-1, EN61557 Alslamiento: Clase 2, Doble aislamiento

Nivel de polución: 2

Categoría de sobretensión: CAT III 550V (fase – tierra) CAT III 550V (fase – fase)

Uso interno; altitud max: 2000m

6.1.3. Características generales

Características mecánicas

Dimensiones: $240(L) \times 100(La) \times 45(H)mm$

Peso (pilas incluidas): aprox. 630g

Alimentación

Tipo pila: 4 pilas 1.5V AA LR6 MN1500

Indicación pila descargada: Sobre el visualizador aparece el símbolo "----"

cuando la tensión de la pila es demasiado baja

Duración pilas: Multímetro: Aprox. 90 horas

©: > 1000 pruebas LAN: > 1000 pruebas

 Ω 0.2A: > 1000 pruebas @ 1Ω

 $M\Omega$: > 1000 pruebas@ 480k Ω (500VCC)

RCD: > 1000 pruebas Ra <u>+</u>: > 1000 pruebas AUTO: > 1000 pruebas

Visualizador

Características: 4 LCD con lectura máxima 9999 puntos más

signo y punto decimal.

6.2. AMBIENTE

6.2.1. Condiciones ambientales de uso

Temperatura de referencia: $23^{\circ} \pm 5^{\circ}$ C Temperatura de uso: $0 \div 40^{\circ}$ C Humedad relativa admitida: <70% Temperatura de almacenamiento: $-10 \div 60^{\circ}$ C Humedad de almacenamiento: <70%

6.2.2. EMC

Este instrumento es conforme a los requisitos de la Directiva Europea sobre baja tensión 73/23/CEE y de la directiva EMC 89/336/CEE, modificada con la 93/68/CEE

6.3. ACCESORIOS

Ver lista adjunta.